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...that for a discrete manifold the principle of measurement is already
contained in the concept of this manifold, but that for a continuous
one it must come from elsewhere. Either therefore the reality which
underlies space must form a discrete manifold, or we must seek the
ground of its metric relations elsewhere...

“On The Hypotheses Which Lie at the Bases of Geometry”
Bernhard Riemann

1 Problems with Points, Old and New

There is a strong case to be made that if there are any physical objects or
regions of space, then they are made of dimensionless, partless, zero-size points.
But there are problems with points, or, more exactly, with the assumption that
they are what physical objects or regions of space are made of. Difficulties emerge
when considering the fact that if there are any physical objects or regions of space,
such things have sizes, some of which are positive.1 I think at least one of these
difficulties is real, that it presents a genuine and serious puzzle. But it is not one
that has received any serious attention.

Zeno contended that nothing of positive size is composed of points. One of
his arguments was rather simple, and was later stated pithily and emphatically by
Pierre Bayle [1710, 3077]: “For themost inapprehensive Capacities may apprehend
with the utmost certainty, if they consider it with a little attention that several
nullities of Extension joined together will never make an Extension.” We might
put it less pithily and more carefully as follows: for any collection of things, if
the (arithmetical) sum of their sizes is x, then the size of their (mereological or
set-theoretic) sum is at most x. But for any collection of points no matter how
large, the (arithmetical) sum of their sizes is 0, since every point (or its singleton
set) is of size 0. So for any collection of points, the size of their (mereological or
set-theoretic) sum is at most 0.

The conclusion of the argument, if true, would indeed be problematic for points.
But its second premise is false. There are some collections of points whose sizes
have no arithmetical sum. In particular, an uncountable collection of numbers
has no well-defined sum, so the sizes of uncountably many points have no well-
defined sum. And physical objects or regions of space, if they are of positive size,

1Alongside such size-related problems, there might be other, topological problems: Grunbaum
[1952] addresses the problem of how a region of positive dimensions can be the set-theoretic sum
of zero-dimensional subsets; and Zimmerman [1996] argues that if extended physical objects were
made of points, then they would be precluded from coming into contact with one another just
because of the shapes of their surfaces or the structure of their outermost parts, which Zimmerman
thinks impossible. Cf. Sider [2000].
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are all made of uncountably many points. The size of a physical object or region
of space is thus not determined by the size and number of its ultimate parts.2

More recently, Peter Forrest [2004] has suggested that a specific result from
the mathematical theory of measure creates trouble for points. As Banach and
Tarski showed, if measure is finitely additive and the Axiom of Choice is true,
then there are regions of R3 that do not have any size at all. By the same token,
if physical space is a three-dimensional manifold of points, and the size of such
regions is finitely additive, and the Axiom of Choice is true, then there are regions
of space that have no size. But, Forrest contends, every region of space has some
size or other. As he puts it,

My case against the orthodoxy is a simple one. I start from the Banach-
Tarski theorem...We have an interesting theorem if we are consider-
ing sets of triples of reals. But if we hold that these sets of coordi-
nate triples represent real regions then the Banach-Tarski theorem
becomes the Banach-Tarski paradox. (352)

I’m not convinced that every region of space must have some size. Sure, ordi-
nary regions of space better have sizes, but it’s not clear to me that every region,
no matter how cockeyed or diffuse, no matter whether it could ever be occupied
by a physical object, imagined by folks like us, or painted purple, must have some
size or other. There might be no answer to the question, “How much purple paint
do I need to exactly cover that region?” but I didn’t expect there to always be.

So much for Zeno and Banach-Tarski. There is, however, a problem with
points. If the standard reply to Zeno is right, and the size of a physical object
or region of space is not determined by the size and number of its ultimate parts,
then what does determine its size? You might reasonably assume that nothing
does, that a thing’s size is a fundamental feature of that thing. Or, at the very least,
that when it comes to a region of space, nothing external to that region goes to-
ward determining its size, that its size is entirely determined by how it is in itself.3
But the standard mathematical theory of measure, together with some plausible
metaphysical assumptions, implies that it’s not so: facts about the size of a given
region are partly about that region’s relation to other regions. Such facts, or, more
exactly, relations, are extrinsic.4

2See Grunbaum [1952] for a classic statement of this response. Cf. Sherry [1988].
3Even if you think that occupants of regions have their sizes only in virtue of exactly occupying

a region that has that size – in a way analogous to Bradford Skow’s [2007] claim about shapes –
you are likely inclined to think that the regions they occupy have their sizes intrinsically. Going
forward, I will ignore physical objects – except to illustrate my claims – but everything I say about
regions made of points and the extrinsicality of their size applies, a fortiori, to physical objects
made of points.

4A word on terminology: I use ‘relations’ to cover both monadic properties (thought of as
1-place relations) and polyadic relations.
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This generate a puzzle about points. If regions of space are made of points,
then size relations are extrinsic. If those relations are extrinsic, then their dis-
tribution should be settled by the distribution of intrinsic non-size relations. But
they aren’t. Even once the sub-measure-theoretic structure of a physical space
is settled – including its topological and affine structure – its measure-theoretic
structure still needs settling. That’s very puzzling. It suggests that nothing made
of points could have any size at all.

In the next section I will elaborate the assumptions that constitute our puzzle.
In the concluding section I will consider a reply.

2 The Puzzle

2.1 Assumption 1

The first assumption is as follows:

(Size Extrinsic) All possible pointy size relations are extrinsic

A size relation is one that either (a) specifies the relative size(s) of one or more
of its relata (a ‘narrow size relation’, or a ‘size’ for short), or (b) entails a narrow
size relation. Each of these open sentences expresses some such relation: ‘x is a
one hundred meter long stretch of track,’ ‘x has twice the area as y,’ and ‘x is a
wooden two-by-four’.5 A pointy (narrow) size relation is a (narrow) size relation
that entails that all of its relata are composed of points. And a possible pointy
(narrow) size relation is a pointy (narrow) size relation that is possibly instantiated.

An extrinsic relation is one that isn’t intrinsic, where the rough idea is that a
relation is intrinsic if whenever it is instantiated, it is instantiated solely in virtue of
how its bearer is. Restricting our talk of relations to so-called qualitative relations
– and all our talk of relations both heretofore and henceforth is hereby restricted
in that way – we can say that a relation is intrinsic just in the case that necessarily,
for anything that instantiates it, necessarily any intrinsic duplicate of that thing
instantiates it as well. In short, a relation is intrinsic iff it never differs between
possible intrinsic duplicates.6

So, Size Extrinsic amounts to the claim that for any relation which is possibly
instantiated, says or implies anything about the size of its bearer, and implies that
its bearer is composed of points, there are possible intrinsic duplicates that differ

5I wish to remain neutral as to whether, if some non-pointy size relations are fundamental (and
hence intrinsic), they are expressible by one-place or two-placed predicates. See Eddon [2013] for
a discussion of that question about quantities more generally.

6At least that’s what I will mean by ‘intrinsic’. Even if Lewis [1983] and others are wrong in
claiming that this captures our pre-theoretic notion of intrinsicality – see Eddon [2011] and Mar-
shall [2015] for arguments to that effect – it’ll serve my purposes just fine as long the assumptions
of the puzzle are plausible so understood.
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with respect to it. For example, if Size Extrinsic is true, and some possible two-
by-four is composed of points, then there are two possible pieces of lumber that
are intrinsic duplicates, one of which, like your usual two-by-four, is 2” × 4” ×
8’, and one of which isn’t.7 And if my son’s 1:32 scale model of a Subaru Impreza
and a full size Subaru Impreza are composed of points, then the pair of them has
a possible duplicate pair the sizes of whose members don’t stand in the ratio 1:32.
These consequences are surprising. Why think they’re true? More to the point,
why think Size Extrinsic is true?

Very roughly, the reason to think it’s true is that the standard mathematical
theory of measure has it as a consequence. More exactly, the reason to think it’s
true is as follows. (1) Pointy size is to be understood as – or at least is equivalent
to – a physical analogue of the Lebesgue measure (defined on Rn), which I shall
call ‘Lebesguep measure’ (Size is Measure).8 (2) Possibility is combinatorial: no
intrinsic nature places any absolutely necessary constraints on its bearer’s sur-
roundings (Patchwork Principle).9 (3) If Patchwork Principle is true then for any
possible relation that entails a Lebesguep measure, there are two possible intrinsic
duplicates that differ with respect to that relation (Measure Extrinsic). So any pos-
sible relation that entails a Lebesguep measure is extrinsic. So all possible pointy
size relations are extrinsic.

This is still a rather bare bones version of the argument, one that is unlikely
to win any adherents just as it stands. A fleshed out argument needs to include
a detailed justification of Measure Extrinsic. I will present such a justification,
but in two stages, or two versions.10 To understand why Measure Extrinsic is
true, we need to have a look at the nuts and bolts of measure theory, at how
Lebesgue measure, for example, is defined. And I’ll present an argument that
does just that: it not only justifies but also illuminates the claim that all Lebesguep
measure relations are extrinsic. But even without an acquaintance with those nuts
and bolts, we can see that Measure Extrinsic, or something near enough, is true:
we can see that if Patchwork Principle is true, then for any possible Lebesguep

7Or, that one is made of points and one isn’t. But then they could be intrinsic duplicates only
if a point could be an intrinsic duplicate of a non-point (see nt. 24), which would serve just as
well as a surprising size-related consequence of Size Extrinsic. In any case, my arguments for Size
Extrinsic establish the stronger claims about the examples in the text.

8See §2.1.2 for an explicit definition of ‘Lebesguep measure’. I assume that if pointy size is a
physical analogue of a standard mathematical measure, that mathematical measure would be the
Lebesgue measure. But I could just as well assume that the relevant mathematical measure would
be the Jordan measure, say, and the arguments would be essentially unchanged. (The Lebesgue
measure is countably additive, while the Jordan measure is only finitely additive.)

9More generally, Patchwork Principle guarantees the possibility of any number of instances of
any intrinsic natures in any which arrangement. See Lewis [1986]. For a more careful formulation,
see Segal [2015, §2]. (An ‘intrinsic nature’ is a relation shared by all and only intrinsic duplicates
of some possibile. It is equivalent to the conjunction of all its bearer’s intrinsic properties.)

10I will not provide any justification for Size is Measure or Patchwork Principle; I take the former
to be obvious and I’ve defended the latter elsewhere (Segal [2014]).
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measure, there are two possible intrinsic duplicates that differ with respect to it
(Measure Extrinsic*). And we can see this simply by attending to the Lebesgue
measure of a certain subset of R and the Lebesguep measure of the corresponding
subset of a one-dimensional pointy physical space. This provides us with a quick
and unenlightening argument for the extrinsicness of pointy sizes. We’ll then turn
to the slower andmore illuminating argument for the fully general conclusion that
all pointy size relations are extrinsic.

2.1.1 Quick and Unenlightening Argument

First, for the subset of R. The Cantor Ternary Set is obtained from the interval
[0,1] by deleting the open middle third interval, leaving over [0, 1
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points, but has Lebesge measure 0. Interesting as the Cantor Ternary Set is, it’s
not exactly what I’m interested in. Rather, I’m interested in a variant that I shall
call the ‘Right-Open Cantor Ternary Set’. The Right-Open Cantor Ternary Set is
obtained from the half-open half-closed interval [0,1) by deleting the half-open,
half-closed middle third interval, leaving over [0, 1
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like the Cantor Ternary Set, contains uncountably many points, and has Lebesgue
measure 0.13 But in addition, the Right-Open Cantor Ternary Set is topologically
isomorphic to any half-open interval, such as the interval [0,1). Both have the
(intrinsic) topology of the continuum: they are dense and Dedekind complete.14

Next, for the subset of a one-dimensional pointy physical space. Say E is a
pointy physical space that is topologically isomorphic to R. Let ‘GEORG’ name
the subset of E that corresponds to the Right-Open Cantor Ternary Set.15 GEORG
contains uncountably many points, and has Lebesguep measure 0 meters.16 But

11More formally, let In =
∪
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Set =
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In.

13For the argument, see Appendix A.
14For the argument, see Appendix B.
15The numerical representation of a point in E is furnished by the length of an interval one of

whose endpoints is an arbitrary point in E, the ‘origin,’ and whose other endpoint is the point in
question. This allows us to speak of ‘the subset of E that corresponds to ϕ’, where ‘ϕ’ is replaced
by the name of a subset of R.

16That is, assuming it’s possible for something to have a Lebesguep measure. There is no harm
in my assuming that: if no Lebesguep measure is possibly instantiated – and so, per Size is Mea-
sure, neither is any pointy size – then Size is Extrinsic is vacuously true. Since the assumption is
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in addition, GEORG is topologically isomorphic to any half-open interval, such as
MATT, a left-closed right-open meter-long interval in E. Both have the (intrinsic)
topology of the continuum: they are dense and Dedekind complete.

GEORG and its intrinsic duplicates serve as witnesses to the embedded exis-
tential claim in the consequent of Measure Extrinsic*. If Patchwork is true, then
there is a possible scenario in which an intrinsic duplicate of GEORG has no other
points between its own. Such an intrinsic duplicate is a non-degenerate interval,
as it has everything it takes intrinsically to be a non-degenerate interval, and there
isn’t anything between its points to get in the way. But note: necessarily, no non-
degenerate interval has Lebesguep measure 0 meters. That would make hash of
the notion of Lebesguep measure; it couldn’t sensibly be a measure. (And since
pointy size is equivalent to Lebesguep measure, pointy size couldn’t sensibly be
a size.) So that intrinsic duplicate of GEORG does not have Lebesguep measure 0
meters. This implies that the relation, having Lebesguep measure 0 meters, is
extrinsic.

Indeed, of necessity every interval in pointy physical space has positive Lebesguep
measure. So GEORG’s intrinsic duplicate has positive Lebesguep measure. This
implies that some positive Lebesguep measure is extrinsic. But presumably, what’s
true for one of GEORG’s interval duplicates is true for all of them. There isn’t just
one positive Lebesguep measure that is extrinsic: if it’s true for one, it’s true for all.
Thus, Measure Extrinsic*. And that, together with Size is Measure and Patchwork,
implies that all possible pointy sizes are extrinsic.

One might reply by denying that GEORG’s intrinsic duplicate is an interval
even in a possible scenario in which there are no other points between its own.
Here’s the only way I can see how one would do so: suppose distance between
concrete points in a physical space (‘physical distance’ for short) is intrinsic. If
physical distance is intrinsic, then no possible intrinsic duplicate of GEORG is
congruent to any possible interval, since GEORGE itself is not congruent to any
possible interval.17 So no possible intrinsic duplicate of GEORG is an interval, even
one in an environment in which there were no points between its own.

The trouble with this reply is that there is very good reason to think that the
lack of congruence between GEORG and any interval is itself due to what’s in-
terspersed between their points; good reason, more broadly, to think that physical
distance is extrinsic. For one thing, according to the standard account of physical
distance, what Bricker [1993] calls the “Gaussian conception,” it is extrinsic. Here
is Maudlin [2014]:

In a geometrical space, the distance between two points is usually
defined as the the length of the shortest continuous curve that connects
them. (55)

harmless, I will make it at various points in the next paragraph in the text.
17Two sets of points are congruent if there is a one-to-one mapping from one to the other that

preserves distances. Crucially, congruence is an equivalence relation.
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...distances are not geometrical primitives: the distance between two
points is a derivative notion. More basic than distance is the length
of a line connecting the two points: the distance may then be defined
as an extremal length (often the shortest length) of all lines that have
the points as endpoints. (205)

Clearly enough, if to say that the distance between a and b is ϕ is to say something
about the length of all the curves that connect a and b, then distance relations are
extrinsic. As Bricker [1993] elaborates,

On the Gaussian conception...the distance between two points turns
out not to be an intrinsic relation of those points. If some of the space
surrounding two points is “removed,” some or all of the paths con-
necting those pointsmay no longer exist, and the length of shortest re-
maining path – the new distance between the points – may be greater
than it was, or not defined. If the space surrounding two points is em-
bedded in a larger space, new paths connecting the points may come
into existence, and the length of the shortest connecting path – the
new distance between the points – may be less than it was. In short:
the distance between two points does not depend solely upon the in-
trinsic nature of the fusion of the two points. (27)18

For another thing, there are good reasons that derive from Patchwork to think
physical distance is extrinsic. For instance, the triangle inequality, widely held to
be partly constitutive of the notion of distance, imposes an absolutely necessary
constraint on the distance between two points, given the distance between each
of those points and a third point. If physical distance is intrinsic, this necessary
constraint violates Patchwork.19

The upshot: it’s very hard to salvage the intrinsicness of size by resorting to the
intrinsicness of distance, since the latter idea is both non-standard and Humeanly
intolerable. And if you are prepared to accept what a Humean cannot tolerate,
then you might as well object to the argument on those grounds alone; no need to
drag distance into it.

The Quick and Unenlightening argument strongly suggests that pointy size is
extrinsic. However, being quick and unenlightening, it doesn’t explainwhy that is,

18Note: if the standard Gaussian account is correct, then contrary to the impression one might
get from Bricker’s remarks distance relations are extrinsic even to pairs of points in a one-
dimensional space (where there is only one path that connects them), since the length of the path
that connects them is a matter of howmuch lies between the two points and whether the two points
lie in a one-dimensional space or a multi-dimensional space is a matter that is itself extrinsic to the
points.

19See Maudlin [2007, 88-9]. Maudlin and I are assuming a version of Patchwork that guarantees
possibilities that involve overlap (at least under certain conditions, conditions which are met in
this case); see Segal [2015, §2] for details.
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and it doesn’t establish that all pointy size relations are extrinsic. For illumination
and generality we turn to the Slower and More Illuminating Argument, which
begins with a definition of Lebesgue measure.

2.1.2 Slower and More Illuminating Argument

How is the Lebesgue measure defined? What does it mean to say, for example,
that the Lebesgue measure m(S) of a certain subset S of R equals 2? (For the sake
of simplicity, I restrict my attention throughout the remainder of my discussion
to one-dimensional spaces and the size relations their regions instantiate; for one
thing, the topology of a one-dimensional space is fixed by an ordering of its points.
But the argument can easily be generalized.) We start with an assignment of a real
number to each of the intervals. For any interval I in R from a to b, its so-called
elementary measure, m(I ), is simply b – a. In order to expand our assignment of
measure beyond just intervals, we first introduce the notion of a Lebesgue outer
measurem*, which applies to any arbitrary subset S of R: we say thatm*(S) is the
minimal, or more exactly infimal, cost required to cover S by a countable union of
intervals. In other symbols,

m*(S) = inf
S⊆

∞∪
i=1

Ii;Iiinterval

∞∑
i=1

m(Ii)

Finally, for any Lebesgue measurable set S the Lebesgue measure of S just is the
Lebesgue outer measure of S.

What’s critical to notice for our purposes is that the Lebesgue outer measure of
at least some subsets of R is at least partly a matter of the size of sets that properly
include them. Hence the apt name, ‘Lebesgue outer measure’. In particular, the
outer measure of any subset of R that isn’t itself a countable union of intervals is
partly determined by the nature of its surroundings.

And the same goes for subsets of a one-dimensional pointy physical space, like
E. We can define Lebesguep measure in just the same way as Lebesgue measure.
We start with an assignment of a real number to each of the intervals. For any
interval I in E from a to b, its so-called elementaryp measure, mp(I ), is simply its
length-in-meters (or in-cubits, or in-some-unit-or-other).20 The Lebesguep outer

20That is, assuming it’s possible for something pointy to have a length. But as I remarked in
nt. 16, there is no harm in my assuming that: if no pointy size is possible, then Size is Extrinsic
is vacuously true. Since the assumption is harmless, I will make it at various points in the next
paragraph in the text.

N.B. There is something puzzling here. Since we have argued that physical distance is extrinsic,
you might reasonably deduce frommy discussion that elementaryp measure, the length of a pointy
interval, is fundamental (and hence intrinsic). But it can’t be, as we’ll see: Patchwork won’t allow
it. This is puzzling: where does a pointy interval’s elementaryp measure, its length, come from?
But noting this does nothing to impugn the coherence of Lebesguep measure and with it, the force
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measuremp*(S) of any arbitrary subset S of E is the minimal, or more exactly infi-
mal, cost required to cover S by a countable union of intervals. In other symbols,

mp*(S) = inf
S⊆

∞∪
i=1

Ii;Iiinterval

∞∑
i=1

mp(Ii)

Finally, for any Lebesguep measurable set S the Lebesguep measure of S just is the
Lebesguep outer measure of S. And just as with regard to the Lebesgue measure,
the Lebesguep outer measure of some subsets of E is at least partly a matter of
the size of sets that properly include them. In particular, the outer measure of
any subset of E that isn’t itself a countable union of intervals is partly determined
by the nature of its surroundings. Modify those surroundings sufficiently, but
hold fixed a thing’s intrinsic nature and its Lebesguep outer measure will change
accordingly.

Lo and behold, GEORG and its intrinsic duplicate provide a good illustration
(although by no means the only). GEORG is not a countable union of intervals.21
Its Lebesguep outer measure of 0 meters is therefore partly determined by the na-
ture of its surroundings. Modify those surroundings sufficiently, say by removing
all the other points between its own, but hold fixed its intrinsic nature, and the
Lebesguep outer measure of that set will not be 0 meters. And if Patchwork is
true, then such a modification is guaranteed to be possible: there is a possible
scenario in which an intrinsic duplicate of GEORG has no other points between
its own. Such an intrinsic duplicate is a non-degenerate interval, and so has pos-
itive Lebesguep outer measure. So Lebesguep outer measure is extrinsic. More
importantly, since GEORG is Lebesguep measurable (as a bonus, so is the intrinsic
duplicate we’re considering), Lebesguep measure itself is extrinsic.

This already allows us to give an argument for the conclusion that all possible
pointy sizes are extrinsic – much like the Quick and Unenlightening Argument –
and also explains why they are extrinsic. But what of possible relations that en-
tail them? Given the foregoing argument, one might happily concede that pointy
sizes are extrinsic but object that that fact provides no support for the more gen-
eral claim. Indeed, the details of the argument readily suggest a class of possible
pointy size relations that are intrinsic. I have repeatedly restricted our attention
to those subsets of E that can’t be exactly covered by a countable collection of
intervals. When we instead concentrate on those that can, it would appear that
their Lebesguep outer measure, and hence their Lebesguep measure, is an entirely

of our puzzle; it simply underscores another aspect of it. As I said, if intervals in a one-dimensional
pointy physical space have lengths, then given those lengths, fromwherever they come, Lebesguep
measure can be straightforwardly defined in just the same way as Lebesgue measure to generate
our puzzle.

21As we’ve noted, it contains uncountably many points. So it is a countable union of intervals
only if it includes at least one non-degenerate interval. But if it includes at least one non-degenerate
interval then it does not have Lebesguep measure 0 meters, as it does.
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intrinsic matter. What difference could the surroundings of a set S make to its
Lebesguep outer measure if S just is a countable union of intervals? Thus, the idea
goes, if, and only if, S is a countable union of intervals, any possible intrinsic du-
plicate of S has the same Lebesguep measure as S. From which it follows that any
relation expressible by an instance of the following schema is intrinsic22:

being an x such that (a) x is a countable union of intervals and
(b) x has a Lebesguep measure of ϕ meters

If this is right, then Size Extrinsic is false, since every instance of that schema is
equivalent to a possible pointy size relation.23 And if it’s right, no deep puzzle
would arise, since the distribution of those pointy size relations, along with the
fundamental topological, affine, etc. relations, suffices to settle the distribution of
pointy sizes.

But it isn’t right. The objection ignores the fact thatwhether a set is a countable
union of intervals is itself an extrinsic matter. GEORG, for example (yet again!),
is not a countable union of intervals. But as we’ve seen, if Patchwork is true, then
GEORG has an intrinsic duplicate that is not only a countable union of intervals,
but an interval. So there are intrinsic duplicates that differ with respect to some
instance of the relation schema,

being an x such that (a) x is a countable union of intervals and
(b) x has a Lebesguep measure of ϕ meters,

pace the objection. And the very same point can be made in response to the sug-
gestion that instances of the following relation schema (i.e. elementaryp measures)
are intrinsic:

being an x such that (a) x is an interval and (b) x has a Lebesguep
measure of ϕ meters

Since there don’t seem to be any other decent candidates for possible intrinsic
relations that entail a Lebesguep measure, Measure Extrinsic itself – and not just

22Suppose something S has a relation expressible by an instance of the schema: for the sake of
definiteness, let ‘1’ substitute for ‘ϕ’. Then S is a countable union of intervals, so, by assumption,
every possible intrinsic duplicate of S has the same Lebesguep measure as S; that is, every possible
intrinsic duplicate has a Lebesguep measure of one meter . Furthermore, every possible intrin-
sic duplicate of S is a countable union of intervals. For suppose there is some possible intrinsic
duplicate S’ of S – and so of Lebesguep measure of one meter – that is not a countable union of
intervals. Then, by the ‘only if’ half of the assumption, S’ has an intrinsic duplicate S” that does
not have a Lebesguep measure of one meter. But intrinsic duplication is transitive, so S” is an in-
trinsic duplicate of S, which contradicts the assumption that every possible intrinsic duplicate of S
has a Lebesguep measure of one meter. Thus, every possible intrinsic duplicate of something that
has the relation, being an x such that (a) x is a countable union of intervals and (b) x has a
Lebesguep measure one meter also has that relation. And so the relation is intrinsic.

23At least if pointy size relations are in fact possible. And we will have been given no reason to
think they aren’t.
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Measure Extrinsic* – seems very difficult to deny.24 And as we’ve noted, that,
together with Size is Measure and Patchwork, implies that all possible pointy size
relations are extrinsic.

Of course, neither the Quick andUnenlighteningArgument nor the Slower and
More Illuminating Argument show that non-pointy size relations are extrinsic.25
More generally, we have no reason anywhere in the vicinity of these arguments
to think that non-pointy size relations are extrinsic. Pointy space has two rivals:
gunky space and chunky space. In the former sort of space, there is no minimal
size, and in the latter sort, there is a minimal positive size.26 In either case, there
are no regions of size 0, and hence no region of finite size can be decomposed into
more than countably many parts. Since size is countably additive (or at least it’s
ordinarily taken to be), we should accept the principle, which we couldn’t accept
for pointy space, that for anything x and any collection of things that compose
x, the size of x is the sum of the sizes of the members of that collection.27 And
given that principle, there is no longer any reason along the lines I have sketched
to believe that the size of such regions or objects is extrinsic. The size of any such
region or object is always strictly determined by the sizes of its parts, and the size
of each of those parts is in turn strictly determined by the sizes of its parts, and so
on: it won’t matter what else you throw in between them.28

2.2 Assumption 2

The second assumption is as follows:

(Extrinsic Supervenes) The set of extrinsic relations globally super-
venes on the set of intrinsic relations

24What about possible pointy size relations that entail being a point or being a countable
collection of points, and hence having Lebesguep measure 0? Might those be intrinsic and
possible?

Perhaps they would be. But the larger puzzle would be unaffected by the concession that only
those possible pointy size relations are intrinsic, for the distribution of those relations, together
with that of the fundamental topological, affine, etc. relationswon’t suffice to settle the distribution
of the rest of the pointy size relations. And aside from those, there don’t seem to be any even half-
decent candidates for intrinsic possible pointy size relations.

25A ‘non-pointy size relation’ is a size relation that entails that none of its relata is composed of
points.

26I have in mind the measure-theoretic sense of both ‘gunky’ and ‘chunky’. Each conception
has an illustrious history and has recently received some support, or at least some positive press,
or at least some consideration as an interesting possibility worthy of investigation. For discussion
of gunk, see Skyrms [1993], Zimmerman [1996], Hawthorne and Weatherson [2004], Arntzenius
and Hawthorne [2005], Arntzenius [2008], and Russell [2008]. For some discussion of chunk, see
Simons [2004], Forrest [1995], and Forrest [2004].

27See Arntzenius and Hawthorne [2005], where this principle is called ‘Summing’. For discus-
sion of whether size is indeed countably additive, see Russell [2008].

28For a fully developed mathematical theory of measure for pointless spaces, see Caratheodory
[2011]. The measure Cartheodory defines is intrinsic.
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What I mean by ‘global supervenience’ is as follows: where A is a set of relations,
let an A-isomorphism be a one-to-one mapping that is isomorphic with respect to
every relation in A. Then,

‘set A globally supervenes on set B’ =df for any worlds w1 and w2,
every B-isomorphism from w1’s domain onto w2’s domain is an A-
isomorphism.29

So, Extrinsic Supervenes amounts to the claim that the distribution of extrinsic
relations can’t float free – it’s always settled by the distribution over everything
there is of the intrinsic relations.

The argument for this claim is extremely straightforward. If two possible
Worlds, W 1 and W 2 are intrinsic duplicates, then the two Worlds do not differ
at all, except perhaps in a non-qualitative way.30 After all, they are intrinsic du-
plicates and neither is accompanied by anything disjoint from itself. But then
Extrinsic Supervenes follows immediately.31

2.3 Assumption 3

The third and final assumption is this:

(Size Floats Free) If there is a possible pointy size relation, then the set
of possible pointy size relations does not globally supervene on the
set of intrinsic non-pointy-size relations32

This assumption should, at this point, hardly require any defense. Since I have
already argued that distance relations are not intrinsic, it seems to be the case that
the set of possible pointy size relations globally supervenes on the set of intrinsic
non-pointy-size relations only if either there are no possible pointy size relations
or the sub-metrical structure of a pointy physical space is all the structure to be
had. And the latter disjunct is obviously false, on both a priori and a posteriori
grounds. A priori grounds: one can rather easily conceive of two pointy physi-
cal spaces such that a sub-metrical isomorphism from the domain of one to the

29This is equivalent to what Sider [1999] calls ‘strong global supervenience’; see his nt. 10.
30I am using ‘World’ (capitalized) to mean ‘concrete world,’ i.e. ‘whole Cosmos’, not an ersatz

or linguistic representation of such. And to avoid taking any controversial mereological positions,
I mean to use that latter phrase to denote a sequence of all the individuals there are, rather than a
mereological sum of them.

31Let ‘B’ name the set of intrinsic relations, and ‘A’ name the set of all (qualitative) relations.
Suppose f is a B-isomorphism from the domain of w1 to w2. Then there is some sequence W 1 of
all the individuals in w1 and some sequence W 2 of all the individuals in w2, such that W 2 is the
image (under f ) of W 1, and (consequently) W 1 and W 2 are intrinsic duplicates. But since W 1 and
W 2 are also Worlds, they share all qualitative relations (by the assumption in the text). So then f
is an A-isomorphism.

32A ‘non-pointy-size relation’ (not to be confused with a non-pointy size relation – see nt. 25)
is one that is not a pointy size relation.
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domain of the other isn’t a measure-theoretic isomorphism. A posteriori grounds:
no empirically adequate theory of physical reality has ever been proposed that re-
lies only on the sub-metrical structure of space.33 So if there are possible pointy
size relations, they don’t globally supervene on the set of intrinsic non-pointy-size
relations.

2.4 Pulling the Puzzle Together

As should hopefully be clear, our three assumptions – Size Extrinsic, Extrinsic
Supervenes, and Size Floats Free – are inconsistent with there being any possible
pointy size relations. Given Size Extrinsic and Extrinsic Supervenes, the set of
possible pointy size relations globally supervenes on the set of intrinsic relations;34
but again, given Size Extrinsic, the set of intrinsic relations is the same set as the
set of intrinsic non-pointy-size relations. So the set of possible pointy size relations
globally supervenes on the set of intrinsic non-pointy-size relations. But, if there
is a possible pointy size relation, then according to Size Floats Free, they don’t
supervene on the set of intrinsic non-pointy-size relations. So there is no possible
pointy size relation.

The puzzle is now in place. It suggests that no pointy size relation could be
instantiated, that it’s not possible for something that is made of points to have any
size at all. Before I consider a resolution, let me briefly discuss the applicability
of our puzzle to mathematical spaces. One might think that if there is a puzzle
about physical spaces of concrete points, then a fortiori there is a puzzle about
mathematical spaces of abstract points, since the measure functions I have been
discussing were defined explicitly regarding such spaces. If that’s true, then so
be it. But I am not at all convinced that it is true. Several replies can be given in
the case of the mathematical spaces but not in the case of physical spaces. Here I
mention two:

1. Nominalism – there are no abstracta. And if there are no abstracta, then
there are no mathematical spaces made of abstract points. And if there are
no such spaces, then of course there are no regions to instantiate measure-
theoretic relations, either extrinsically or intrinsically.

2. Restricted Patchwork – there are abstracta, but Patchwork therefore needs
to be restricted to concrete reality. This makes room for several places to
balk at my arguments, were they directed at mathematical spaces. For exam-
ple, we might say that distance between abstract points in a mathematical

33Since these grounds are a posteriori, they establish only a conditional: if our space is in fact
pointy, then Size Floats Free is true.

34If there are no possible pointy size relations, the set of pointy size relations is empty, and
supervenes on any set whatsoever.
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space (‘mathematical distance’ for short) is intrinsic, and perhaps even in-
ternal (in the sense that it is settled by the intrinsic natures of the relata).35
Since mathematical distance is intrinsic, a version of Size Extrinsic about
the measure of mathematical regions is false, as is a version of Size Floats
Free about mathematical spaces. The fact that mathematical distance is in-
trinsic doesn’t run afoul of the Patchwork Principle, despite mathematical
distance’s obedience to the triangle inequality and other related constraints,
since the Patchwork Principle is restricted to concrete reality.

Now back to our original puzzle and a possible resolution.

3 Possible Resolution: Size Doesn’t Float Free

As I said inmy brief defense of Size Floats Free, since I have already argued that
distance relations are extrinsic, it seems to be the case that Size Floats Free is false
only if the sub-metrical structure of a pointy physical space is all the structure to
be had. But maybe things aren’t how they seem. How could pointy size not float
free and yet be an independent source of structure?

I see only one way. Perhaps there are intrinsic relations whose distribution
settles the pointy size facts, but they are not instantiated by regions of ordinary,
pointy space (or spacetime). They are instantiated by something else: an underly-
ing space, aMind ... something or other, whose existence and nature determines the
existence and nature of our ordinary, pointy space (or spacetime). The intrinsic
character of this other thing determines the pointy size facts, so Size Floats Free is
false; but that in no way implies that the sub-metrical structure is all the structure
to be had (even in pointy spaces). Two possible pointy spaces can differ in their
metrical structure without differing in their sub-metrical structure: they will just
differ with respect to the intrinsic character of something else that accompanies
them.

This resolution has at least this going for it: its chief implication for funda-
mental reality – viz., that no pointy space has any part in it – agrees with that
of leading theories in quantum gravity.36 But it goes further than such theories
in denying the possibility of a fundamental pointy space, or at least of one whose
regions have sizes. Mathematical physicists had assumed for some time and as a
matter of course that physical space is fundamental and pointy. If we have only
this way out of the puzzle, then their assumption couldn’t so much as possibly
have been true. A pointy physical space, whose regions have sizes, can be no part

35See Maudlin [2014, pp. 6-9] for the claim that each point in Rn has a rich intrinsic nature,
an intrinsic nature that entails such-and-such a metrical relation to points with thus-and-such
intrinsic nature.

36See, inter alia, Huggett and Wuthrich [2013].
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of fundamental reality. If that’s not a devastating problem for points, it’s a rather
significant blow.37
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A Measure 0 and Uncountable

In this Appendix I prove that the Right-Open Cantor Ternary Set has Lebesgue
measure 0 and contains uncountably many points.
(a) Lebesgue measure 0: the Right-Open Cantor Ternary Set is a proper subset of
the Cantor Ternary Set. Lebesgue outer measure is monotonic – so the Lebesgue
outer measure of the Right-Open Cantor Ternary Set is ≤ 0, and so it is equal to
0. Every set of Lebesgue outer measure 0 is measurable [Tao, 2011, p. 26], so its
Lebesgue measure is itself 0.
(b) Uncountably many points: the Cantor Ternary Set is the union of the Right-
Open Cantor Ternary Set and the Left-Open Cantor Ternary Set (defined in the
natural way); by considerations of symmetry, the Right-Open Cantor Ternary Set
is countable iff the Left-Open Ternary Set is countable. But the union of two count-
able sets is countable, so if the Right-Open Cantor Ternary Set is countable, so is
the Cantor Ternary Set, contrary to fact.

B Dedekind Complete and Dense

In this Appendix I prove that the Right-Open Cantor Ternary Set is both Dedekind
complete and dense.
(a) Dedekind completeness: suppose there is a partition of the Right-Open Cantor
Ternary Set into two sets, A1 and A2, such that every member of A1 is less than
every member of A2, but there is no member of the Right-Open Cantor Ternary
Set that is both greater than or equal to every member of A1 and less than or equal
to every member of A2. (That is, suppose it’s not Dedekind complete.) But since
the real-number interval (0,1) is Dedekind complete, there is some real number r,
0 < r < 1, such that r is both greater than or equal to every member of A1 and
less than or equal to every member of A2. So r is not a member of the Right-
Open Cantor Ternary Set. It must have been “removed” at some point, i.e. it
must belong to some half-open interval that contains no members of the Right-
Open Cantor Ternary Set but whose right endpoint is a member of the Right-
Open Cantor Ternary Set. But then the right endpoint of that half open interval
is a member of the Right-Open Cantor Ternary Set that is greater than or equal to
every member of A1 and less than or equal to every member of A2, contrary to our
assumption. Reductio.
(b) Density: for any two members of the Right-Open Cantor Ternary Set, x and
y, x < y, there is an interval [c, d) – where x < c, d ≤ y – such that for some n, c

=
n∑

i=1;ai∈{0,2}

ai

3i
+ 1

3n
. (The interval [c,d) is one of the intervals that was removed.

There must be some such interval since there is some point in the complement that
is between x and y – otherwise the Right-Open Cantor Ternary Set would include
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a non-degenerate interval, which it doesn’t – and at every stage at which a point
was removed, a left-closed right-open interval was removed, whose left endpoint
is equal to some such sum.) But for some m, c - x > 1

3m
. If m < n, then c - x > 1

3n
;

so x < (c - 1
3n

) < c; and c - 1
3n

=
n∑

i=1;ai∈{0,2}

ai

3i
∈ Right-Open Cantor Ternary Set, so

there is a member of the Right-Open Ternary Set between x and y. If m ≥ n, then

c =
m∑

i=1;ai∈{0,2}

ai

3i
+ 1

3m
(for any i > n, let ai = 2; keep all other ai the same). So x <

c - 1
3m

< c; and c - 1
3m

=
m∑

i=1;ai∈{0,2}

ai

3i
∈ Right-Open Cantor Ternary Set, so there

is a member of the Right-Open Ternary Set between x and y. Either way, there is
some member of the Right-Open Cantor Ternary Set that is between x and y.

18


	Problems with Points, Old and New
	The Puzzle
	Assumption 1
	Quick and Unenlightening Argument
	Slower and More Illuminating Argument

	Assumption 2
	Assumption 3
	Pulling the Puzzle Together

	Possible Resolution: Size Doesn't Float Free
	Measure 0 and Uncountable
	Dedekind Complete and Dense

